
Architecture Reconstruction: SOOMLA Android Store System

Kennzahl

Matrikelnummer

FAMILIENNAME Vorname

Questionnaire

Question 1:

How many years of programming experience do you have?

Question 2:

How many years of Java programming experience do you have?

Question 3:

Do you have commercial programming experience? If yes, how many years?

Question 4:

Do you have experience in programming computer games? If yes, how many years?

Question 5:

Do you have experience in android programming? If yes, how many years?

SOOMLA Android Store Architecture

Figure 1. SOOMLA Android Store Architecture

The SOOMLA Android Store is an open source framework for supporting virtual economy in

mobile games. This framework allows mobile game developers to easier implement virtual

currencies (tokens, coins, gems, etc.), virtual goods and in-app purchases. The in-app

purchase functionality supports two types of virtual goods: consumables and non- consumables.

The main difference between these two is their durability. For consumable items the

developer expects the user to consume the virtual goods over time and possibly to purchase

them again. The VirtualCurrency is a form of consumable item. A specified amount of

VirtualCurrency can be spent to accumulate VirtualItems (items available in the store for

purchase). In case of insufficient VirtualCurrency, the user needs to purchase a

VirtualCurrencyPack (e.g., 10 coins pack, 20 coins pack, etc.) which holds the VirtualCurrency

and has a price (the cost of the pack). Non consumables, on the other hand, are expected to last

forever and so this type of goods can be used to implement extra levels, a remove ads feature, or

upgrading to a premium version of the game.

The high-level architecture design (shown in Figure 1) of the SOOMLA Android Store

comprises of seven components, namely StoreAssets, PriceModel, StoreController,

DatabaseServices, GooglePlayBilling, Security and CryptDecrypt. In addition, there are two

external components modeled: GooglePlayServer, the REST Web Services running at

Google, and SQLLiteDatabase, the used database accessed over JDBC.

StoreAssets describes the virtual currency, virtual goods, and their classification. PriceModel

describes the model that explains how the prices of virtual items are formed. StoreController

provides the runtime functionality of the Android store and contains up-to-

date store information. This component handles the purchasing and equipment of virtual

items. In addition, the component initiates purchase and refund events, and performs expected

actions in response.

DatabaseServices comprises of classes that communicate with the database. In particular, the

classes enclosed inside this component perform the initialization of the database and

implement retrieve, add, and remove operations for store assets in the database. The classes of

this component also contain SQL queries to create database table as well as to retrieve, set,

and overwrite the information in the database.

GooglePlayBilling simplifies in-app billing API which is a Google play service that lets you

sell virtual goods from inside your applications. It also handles the responses from the

GooglePlayServer regarding the corresponding billing requests. The GooglePlayServer is

accessed using REST Web Services.

Security verifies the information during purchasing. It checks whether signature from the server

matches the computed signature on the data and deals with obfuscation of values before

saving to database and when retrieving from database.

CryptDecrypt contains classes that provides encrypt/decrypt services to obfuscate

GooglePlayBilling information and to encrypt/decrypt the data stored to or retrieved from the

database.

Traceability Links of Architectural Components to the Code-base Classes

The following traceability links summarize the relations of components in the SOOMLA

Android Store Architecture to classes in the implementation code (that is, the component

consists of the related implementation classes). This helps you to understand the links

between the architecture and source code.

Component Name Related Implementation Classes

StoreAssets VirtualCategory.java, VirtualGood.java, VirtualCurrency.java,

VirtualCurrencyPack.java, AbstractVirtualItem.java,

VirtualItemNotFoundException.java, GoogleMarketItem.java,

NonConsumeableItem.java, JSONConsts.java,

VirtualGoodEquippedEvent.java,

VirtualGoodUnEquippedEvent.java,

CurrencyBalanceChangedEvent.java,

GoodBalanceChangedEvent.java, IStoreAssets

StoreController StoreInfo.java, StoreController.java, GoodPurchasedEvent.java,

GoodPurchaseStartedEvent.java, MarketRefundEvent.java,

MarketPurchaseEvent.java, MarketPurchaseStartedEvent.java,

AndroidBus.java, BusProvider.java,

InsufficientFundsException.java, NotEnoughGoodsException.java

DatabaseServices StorageManager.java, KeyValueStorage.java,

VirtualCurrencyStorage.java, VirtualGoodsStorage.java,

NonConsumeableItemStorage.java, StoreFrontInfo.java,

KeyValueDatabase.java (nested class: DatabaseHelper),

StoreInventory.java

GooglePlayBilling BillingReceiver.java, BillingService.java (nested classes:

CheckBillingSupported, GetPurchaseInformation,

ConfirmNotifications, BillingRequest, RequestPurchase,

RestoreTransactions), PurchaseObserver.java,

ResponseHandler.java, Consts.java

CryptDecrypt AESObfuscator.java (nested class: ValidationException),

Base64.java, Base64DecoderException.java,

ObscuredSharedPreferences.java

PriceModel AbstractPriceModel.java, StaticPriceModel.java,
BalanceDrivenPriceModel.java

Security Security.java (nested class: VerifiedPurchase)

GooglePlayServer None (external, running at Google, accessed using REST Web
Services)

SQLLiteDatabase None (external, running in database server, accessed using JDBC)

Exploring the SOOMLA Android Store system

In this assignment you will explore the relationships between the classes within the

corresponding components in the SOOMLA Android Store system architecture and the roles

of the identified relationships. You will also explore the relationships between classes that are

located in different components in the architecture and the roles of those relationships. There

are 4 true/false statements for each component and you have to check the right answers

among them. Please, study the statements carefully, especially in the case of bigger

components where answering the question/statement requires studying of several classes.

Hint: You can get the required information from the following sources:

1. Component architecture and traceability links (can be used to study which components
are interconnected and which classes they contain)

2. Source code (can be used to study the relations between the classes)
3. Comments in the source code (can help/explain the roles of the classes, relationships

between classes, class methods, etc.)
4. You obtain the browser based source code access. You can use the possibility to

search for other classes in the source code of the given class by simple using of
CTRL+F function that will give you (highlight) all the places where the specified class
that you are searching for appears. You can also open many tabs with different classes
that will facilitate your search.

For browser-based source code access please use the next URL:

https://swa.univie.ac.at/soomla/

Important: Please indicate the time when you start and finish exploring each component.

You can write it in the format hour: minute (for example 15:24). There are many time slots

for each component so that you can write the time several times, for example if you would

like to get back and study the given component a second or third time. We put the reminder at

the beginning of each question.

Based on this we can show you how much time you needed to study each component, and it

will help us to adapt the assignment to other students in the future in terms of the number of

studied components, components size, etc.

https://swa.univie.ac.at/soomla/

Question 1: Exploring the component Security

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The class Security uses the class VerifiedPurchase as a nested class that holds verified
purchase information.

2. a) True b) False

The class Security uses the classes Base64 and Base64DecoderException in order to
decode the data from base64 notation and to catch an exception in case that base64
decoding is failed.

3. a) True b) False

The class Security uses the class AESObfuscator in order to obfuscate (make unclear)
of values before saving to database (DB) and when retrieving from DB.

4. a) True b) False
The class Security uses the class ObscuredSharedPreferences in order to generate
base64 encoded representation of the public key during the purchase process
verification.

Question 2: Exploring the component CryptDecrypt

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The class AESObfuscator uses the class Base64 to encode or decode the data using
base64 notation during the obfuscation of values (making the values unclear).

2. a) True b) False

The class AESObfuscator uses the classes ValidationException and
Base64DecoderException to indicate that an error occurred during validating the
integrity of data managed by the AESObfuscator and to indicate that the given virtual
item that need to be obfuscated is not defined in the IStoreAssets.

3. a) True b) False
The class AESObfuscator uses the class ObscuredSharedPreferences to create the
shared preferences (public, private keys) and to send them to the Android Market.

4. a) True b) False
The class Base64 uses the class Base64DecoderException to raise an event in case that
base64 decoding was successful.

Question 3: Exploring the component DataBaseServices

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The class StorageManager uses the classes VirtualGoodsStorage,
VirtualCurrencyStorage, NonConsumableItemsStorage, KeyValueStorage,
AESObfuscator and KeyValDatabase to: create all relevant classes for the storage, get
the database that provide basic key-value storage above SQLite, obfuscate the key-
value pairs of data before saving to the database and after retrieving from the database,
and store the virtual items in the database tables and the tables of the corresponding
storage classes.

2. a) True b) False

The classes StoreFrontInfo, VirtualGoodsStorage, VirtualCurrencyStorage, and
NonConsumableItemsStorage use the classes KeyValDatabase and StorageManager
to: update the amount of the given virtual item in the storage, get the database and
obfuscate the key-value pairs and the store metadata (JSON file) before saving it in the
database.

3. a) True b) False
The class StoreInventory uses the classes StorageManager, VirtualCurrencyStorage,
VirtualGoodStorage, VirtualGood, VirtualCurrency, and StoreInfo to be able to
manipulate with the given virtual items and to get their definitions during providing
the help to the storage related classes in managing store operations (get balances or
remove, add items).

4. a) True b) False
The classes VirtualCurrencyStorage and VirtualGoodsStorage use the classes
BusProvider, AESObfuscator, CurrencyBalanceChangedEvent

(VirtualCurrencyStorage) or GoodBalanceChangedEvent (VirtualGoodsStorage) to:

obfuscate the key-value pairs of data before saving them to the database and after

retrieving them from the database, register for the given events by obtaining the bus,

raise those events in case of the items equipping and increasing or decreasing their

balances. Equipped items are those that are bought once and can be kept forever while

the user can additionally equip them for specific usage.

Question 4: Exploring the component StoreAssets

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The classes VirtualGood and VirtualCurrencyPack can catch the
VirtualItemNotFoundException to indicate that virtual category and virtual currency
cannot be found in the StoreInfo definitions. The VirtualGood and
VirtualCurrencyPack classes are also related to the class StoreInfo in order to get the
information related to the virtual category or the virtual currency that is needed for the
generation of virtual items instances from the JSON objects. The class VirtualGood
uses the class AbstractPriceModel to associate the given good with a price model, to
get the good price, and to convert the associated price model to the JSON object and
vice-versa.

2. a) True b) False

The classes VirtualGood, VirtualCurrency, VirtualCurrencyPack,
NonConsumableItem use the class AbstractVirtualItem to inherit the common features
of all virtual items: generating instances form their JSON object representations,
conversion to the JSON objects, etc. Two of the provided virtual items have their
representations in Google Play (GoogleMarketItem) and each product of those two
items can have status MANAGED, UNMANAGED and SUBSCRIPTION. Only one
of the provided virtual items can be categorized using VirtualCategory where one
virtual category can be associated with many items.

3. a) True b) False

The classes AbstractVirtualItem, GoogleMarketItem, VirtualCategory, VirtualGood,
and VirtualCurrencyPack use the class JSONConsts for accessing of the all static final
String constants defined in that class during the conversion to/from JSON objects
from/to the given virtual item objects. The event classes in the component
GoodBalanceChangedEvent, CurrencyBalanceChangedEvent,
VirtualGoodEquipedEvent, and VirtualGoodUnEquipedEvent contain corresponding
currency and good items and are raised within the component in order to indicate
changes in balances of the given virtual items and changes of the virtual goods’
equipping status.

4. a) True b) False

The classes AbstractVirtualItem, GoogleMarketItem, VirtualCategory, VirtualGood,
and VirtualCurrencyPack use the class JSONConsts for accessing of the static final
String constants defined in that class during the conversion to/from JSON objects

from/to the given virtual item objects. The event classes in the component

GoodBalanceChangedEvent, CurrencyBalanceChangedEvent,

VirtualGoodEquipedEvent, and VirtualGoodUnEquipedEvent contain corresponding

currency and good items and are raised within the component in order to indicate

changes of the virtual goods’ equipping status when their balances significantly

decrease.

Question 5: Exploring the component StoreControler

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The class StoreControler uses the classes GoodPurchasedEvent,
MarketPurchaseEvent, GoodPurchaseStartedEvent, MarketPurchaseStartedEvent, and
MarketRefundEvent to raise events related to the following actions: starting the
currency pack purchase, indicating that virtual good is purchased and the balance of
that good is changed in the storage, indicating that purchase state is changed and a
user is charged for the order, indicating that virtual good purchasing is started, and
indicating that used received the refund for the order.

2. a) True b) False

The class StoreControler uses the classes VirtualGood, VirtualCurrency,
VirtualCurrencyPack in order to be able to manipulate with the given virtual items in
the purchasing process, and it uses the classes StorageManager,
VirtualCurrencyStorage, VirtualGoodStorage, and NonConsumableItemsStorage in
order to: update the amount of the corresponding items, create new virtual items that
are required, and equip the virtual goods.

3. a) True b) False
The class StoreControler uses the classes BillingService, PurchaseObserver,
RequestPurchase, and Consts from the component GooglePlayBilling in order to:
inherit the possibility of making UI changes according to the various purchase events,
access the service that will send the massages to Android Market on behalf of the
application, deal with the response from Android Market for the given purchase
request, and use and update the global constants of possible purchase states and
response code information used through the application to support the in-app billing.

4. a) True b) False

The class StoreInfo uses the classes StorageManager, KeyValDatabase and

AESObfuscator in order to: put the store info in the database as JSON objects,

obfuscate the key-value pairs of the given store assets before saving it to the database,

and delete the un-obfuscated key-value pairs. In case of error during the validation of

data integrity, it catches ValidationException.

Question 6: Exploring the component GooglePlayBilling

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The classes RestoreTransactions, RequestPurchase, BillingService and
CheckBillingSupported use the class ResponseHandler in order to deal with the
response information from the Android Market related to: transactions management,
reporting errors and acknowledgements, starting of the activity for the user to buy an
item, and purchase state changes and notifications about the availability of
MarketBillingService.

2. a) True b) False
The usual data flow in the component GooglePlayBilling can be represented using the
next sequence of relationships: class BillingRequest – Android Market – class
BillingReceiver – class BillingService – class ResponseHandler – class
PurchaseObserver. The sequence can be explained as follows: The class
BillingRequest sends messages to Android Market using MarketBillingService, then
the class BillingReceiver receives and forwards all received messages for handling the
further communication with Android Market to the BillingService class, then
BillingService notifies the application about purchase state changes using the
ResponseHandler class which at the end updates the UI using the received information
from the Android Market (posting appropriate events, updating currency balances,
items, etc.).

3. a) True b) False

The classes BillingService, RestoreTransactions and GetPurchaseInformation use the
class Security to improve the security during the purchasing process by: checking if
the data was signed with the given signature, generating random numbers (Nonce) that
are used for signing the data during getting the purchase information from Android
Market and signing the transactions that are sent from Android Market, and verifying
that restore transactions use the appropriate binary to hexadecimal format conversion.

4. a) True b) False

The classes BillingService, RestoreTransactions, ConfirmNotifications,
RequestPurchase and CheckBillingSupported use the class Consts in order to access:
the possible response code states defined by the Android Market (RESULT_OK,
RESULT_ERROR, etc.), the intent actions defined by the application that are sent from
BillingReceiver to BillingService, intent actions received by the Android Market that

cannot be changed, intent action used to bind to the MarketBillingService, and other

global constants for creating Request bundles (packets).

Question 7: Exploring the component PriceModel

Please, write the stop time in the previously studied component in case you forgot and the

start time in this component.

Time slots:

Start:

Stop:

Please tick the true checkbox for those of the following statements that are completely

true for this component. If the statement is not completely true tick the false checkbox.

1. a) True b) False
The classes StaticPriceModel and BalanceDrivenPriceModel use the class
JSONConsts to create the JSON constants according to the given price model.

2. a) True b) False

The class BalanceDrivenPriceModel uses the classes StorageManager and
VirtualGoodStorage in order to create a new virtual good and save it to the
corresponding storage.

3. a) True b) False

The class BalanceDrivenPriceModel uses the classes StorageManager and
VirtualGoodStorage to remove the given virtual good from the corresponding storage.

4. a) True b) False
The class AbstractPriceModel uses the classes StaticPriceModel and
BalanceDrivenPriceModel in order to create the appropriate StaticPriceModel and
BalanceDrivenPriceModel objects with a given JSON object.

